NAG C Library Function Document

nag_ztrevc (f08qxc)

1 Purpose

nag_ztrevc (f08qxc) computes selected left and/or right eigenvectors of a complex upper triangular matrix.

2 Specification

3 Description

 nag_ztrevc (f08qxc) computes left and/or right eigenvectors of a complex upper triangular matrix T. Such a matrix arises from the Schur factorization of a complex general matrix, as computed by nag_zhseqr (f08psc), for example.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue λ , are defined by:

$$Tx = \lambda x$$
 and $y^H T = \lambda y^H$ (or $T^H y = \overline{\lambda} y$).

The function can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all the eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix Q. Normally Q is a unitary matrix from the Schur factorization of a matrix A as $A = QTQ^{H}$; if x is a (left or right) eigenvector of T, then Qx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that $\max(|\operatorname{Re}(x_i)| + |\operatorname{Im}(x_i)|) = 1.$

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: **order** – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side – Nag_SideType

On entry: indicates whether left and/or right eigenvectors are to be computed as follows:

if side = Nag_RightSide, only right eigenvectors are computed;

if side = Nag_LeftSide, only left eigenvectors are computed;

if side = Nag_BothSides, both left and right eigenvectors are computed.

Constraint: side = Nag_RightSide, Nag_LeftSide or Nag_BothSides.

Input

Input

Input

3: **how_many** – Nag_HowManyType

On entry: indicates how many eigenvectors are to be computed as follows:

if how_many = Nag_ComputeAll, all eigenvectors (as specified by side) are computed;

if $how_many = Nag_BackTransform$, all eigenvectors (as specified by side) are computed and then pre-multiplied by the matrix Q (which is overwritten);

if **how_many** = **Nag_ComputeSelected**, selected eigenvectors (as specified by **side** and **select**) are computed.

Constraint: how_many = Nag_ComputeAll, Nag_BackTransform or Nag_ComputeSelected.

4: select[dim] - const Boolean

Note: the dimension, dim, of the array select must be at least max $(1, \mathbf{n})$ when how_many = Nag_ComputeSelected and at least 1 otherwise.

On entry: select specifies which eigenvectors are to be computed if how_many = Nag_ComputeSelected. To obtain the eigenvector corresponding to the eigenvalue λ_j , select[j] must be set TRUE.

select is not referenced if how_many = Nag_ComputeAll or Nag_BackTransform.

5: **n** – Integer

On entry: n, the order of the matrix T.

Constraint: $\mathbf{n} \ge 0$.

6: $\mathbf{t}[dim] - \text{Complex}$

Note: the dimension, *dim*, of the array **t** must be at least $\max(1, \mathbf{pdt} \times \mathbf{n})$.

If order = Nag_ColMajor, the (i, j)th element of the matrix T is stored in $t[(j-1) \times pdt + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix T is stored in $t[(i-1) \times pdt + j - 1]$.

On entry: the n by n upper triangular matrix T, as returned by nag_zhseqr (f08psc).

On exit: t is used as internal workspace prior to being restored and hence is unchanged.

7: **pdt** – Integer

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array \mathbf{t} .

Constraint: $\mathbf{pdt} \ge \max(1, \mathbf{n})$.

8: vl[dim] - Complex

Note: the dimension, dim, of the array vl must be at least

$\max(1, \mathbf{pdvl} \times \mathbf{mm})$	when	side = Nag_LeftSide	or	Nag_BothSides	and	
order = Nag_ColMajor;						
$\max(1, \mathbf{pdvl} \times \mathbf{n})$	when	side = Nag_LeftSide	or	Nag_BothSides	and	
order = Nag_RowMaj	jor;					
1 when $side = Nag_R$	ightSide.					

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in $vl[(j-1) \times pdvl + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in $vl[(i-1) \times pdvl + j - 1]$.

On entry: if how_many = Nag_BackTransform and side = Nag_LeftSide or Nag_BothSides, vl must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_zhseqr (f08psc)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vl need not be set.

On exit: if $side = Nag_LeftSide$ or Nag_BothSides, vl contains the computed left eigenvectors (as specified by how_many and select). The eigenvectors are stored consecutively in the rows or columns (depending on the value of order) of the array, in the same order as their eigenvalues.

Input

Input

Input/Output

Input

Input/Output

9: **pdvl** – Integer

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **vl**.

Constraints:

 $\label{eq:linear_state} \begin{array}{ll} \text{if order} = \mathbf{Nag_ColMajor}, \\ \text{if side} = \mathbf{Nag_LeftSide} \text{ or } \mathbf{Nag_BothSides}, \ \mathbf{pdvl} \geq \max(1,\mathbf{n}); \\ \text{if side} = \mathbf{Nag_RightSide}, \ \mathbf{pdvl} \geq 1; \end{array}$

if order = Nag_RowMajor, if side = Nag_LeftSide or Nag_BothSides, $pdvl \ge max(1, mm)$; if side = Nag_RightSide, $pdvl \ge 1$.

10: $\mathbf{vr}[dim] - \text{Complex}$

Input/Output

Note:	the dimension, dim,	of the arra	y vr must be at least				
	$\max(1, \mathbf{pdvr} \times \mathbf{mm})$	when	side = Nag_RightSide	or	Nag_BothSides	and	
	order = Nag_ColMajor;						
	$\max(1, \mathbf{pdvr} \times \mathbf{n})$	when	side = Nag_RightSide	or	Nag_BothSides	and	
order = Nag_RowMajor;							
	1 when side = Nag_I	LeftSide.					

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in $vr[(j-1) \times pdvr + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in $vr[(i-1) \times pdvr + j - 1]$.

On entry: if how_many = Nag_BackTransform and side = Nag_RightSide or Nag_BothSides, vr must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_zhseqr (f08psc)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vr need not be set.

On exit: if $side = Nag_RightSide$ or Nag_BothSides, vr contains the computed right eigenvectors (as specified by how_many and select). The eigenvectors are stored consecutively in the rows or columns (depending on the value of order) of the array, in the same order as their eigenvalues.

vr is not referenced if side = Nag_LeftSide.

11: **pdvr** – Integer

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **vr**.

Constraints:

if order = Nag_ColMajor, if side = Nag_RightSide or Nag_BothSides, $pdvr \ge max(1, n)$; if side = Nag_LeftSide, $pdvr \ge 1$;

 $\begin{array}{l} \text{if order} = \mathbf{Nag_RowMajor}, \\ \text{if side} = \mathbf{Nag_RightSide} \text{ or } \mathbf{Nag_BothSides}, \ \mathbf{pdvr} \geq \max(1,\mathbf{mm}); \\ \text{if side} = \mathbf{Nag_LeftSide}, \ \mathbf{pdvr} \geq 1. \end{array}$

12: **mm** – Integer

On entry: the number of rows or columns (depending on the value of order) in the arrays vl and/or vr. The precise number of rows or columns required, required_rowcol, is n if how_many = Nag_ComputeAll or Nag_BackTransform; if how_many = Nag_ComputeSelected, required_rowcol is the number of selected eigenvectors (see select), in which case $0 \le required_rowcol \le n$.

Constraint: $\mathbf{mm} \geq required_rowcol$.

Input

Input

13: **m** – Integer *

Output

On exit: required_rowcol, the number of selected eigenvectors. If how_many = Nag_ComputeAll or Nag_BackTransform, m is set to n.

14: **fail** – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \ge 0$.

On entry, **mm** = $\langle value \rangle$.

Constraint: $\mathbf{mm} \geq required_rowcol$, where $required_rowcol$ is the number of selected eigenvectors.

On entry, $\mathbf{pdt} = \langle value \rangle$. Constraint: $\mathbf{pdt} > 0$.

On entry, $\mathbf{pdvl} = \langle value \rangle$. Constraint: $\mathbf{pdvl} > 0$.

On entry, $\mathbf{pdvr} = \langle value \rangle$. Constraint: $\mathbf{pdvr} > 0$.

NE_INT_2

On entry, $\mathbf{pdt} = \langle value \rangle$, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pdt} \geq \max(1, \mathbf{n})$.

NE_ENUM_INT_2

On entry, side = $\langle value \rangle$, $\mathbf{n} = \langle value \rangle$, $\mathbf{pdvl} = \langle value \rangle$. Constraint: if side = Nag_LeftSide or Nag_BothSides, $\mathbf{pdvl} \ge \max(1, \mathbf{n})$; if side = Nag_RightSide, $\mathbf{pdvl} \ge 1$.

On entry, side = $\langle value \rangle$, $\mathbf{n} = \langle value \rangle$, $\mathbf{pdvr} = \langle value \rangle$. Constraint: if side = Nag_RightSide or Nag_BothSides, $\mathbf{pdvr} \ge \max(1, \mathbf{n})$; if side = Nag_LeftSide, $\mathbf{pdvr} \ge 1$.

On entry, $side = \langle value \rangle$, $mm = \langle value \rangle$, $pdvl = \langle value \rangle$. Constraint: if $side = Nag_LeftSide$ or $Nag_BothSides$, $pdvl \ge max(1, mm)$; if $side = Nag_RightSide$, $pdvl \ge 1$.

On entry, side = $\langle value \rangle$, mm = $\langle value \rangle$, pdvr = $\langle value \rangle$. Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr $\geq max(1, mm)$; if side = Nag_LeftSide, pdvr ≥ 1 .

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

If x_i is an exact right eigenvector, and \tilde{x}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{x}_i, x_i)$ between them is bounded as follows:

$$\theta(\tilde{x}_i, x_i) \le \frac{c(n)\epsilon \|T\|_2}{sep_i}$$

where sep_i is the reciprocal condition number of x_i .

The condition number sep_i may be computed by calling nag_ztrsna (f08qyc).

8 Further Comments

The real analogue of this function is nag_dtrevc (f08qkc).

9 Example

See Section 9 of the document for nag_zgebal (f08nvc).